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The hydrocarbon bicyclo[2.2.0]hex-1(4)-ene (1), which was
prepared and studied by the Wiberg group,1 is highly reactive
as a consequence of its severe angle strain.2 With the expecta-
tion that its fully fluorinated analog2 would manifest very
different but comparably interesting chemistry, we have syn-
thesized this perfluoroalkene and trapped it with a variety of
reagents.3,4

A precursor for2, dibromide5, was prepared in three steps
from hexafluorobenzene as shown in Scheme 1. Vapor-phase
photoisomerization7,8 of the benzene to its Dewar isomer3was
followed by treatment with aluminum bromide to effect selective
replacement of the bridgehead fluorines with bromines, giving
4.9 Because it aromatizes even in the cold and especially
because it tends to detonate capriciously,4was generally carried
on without purification. Low temperature fluorination with 30%
fluorine/helium transformed4 into saturated dibromide5.10
Treatment of5with alkyllithiums at low temperatures or with

zinc assisted by ultrasound yielded the desired alkene2, as
revealed by trapping experiments. The electron-deficient alkene
was susceptible to attack by the reagents required for its
generation, however, so a precursor was sought that would
release it under gentler conditions. Diiodide6, with its much
weaker carbon-halogen bonds, was an appealing choice, but
it could not be synthesized analogously to dibromide5. Efforts
to make the very labile Dewar benzene7 were successful,11

but not surprisingly low-temperature fluorination of7 gave a
hopeless mixture.

We discovered that the bromines in5 can be replaced with
iodines via an electron-transfer process. Ultraviolet irradiation
of an acetonitrile solution of5 and potassium iodide yields a
mixture of bromoiodide812 and diiodide6.13 Either can be
made the dominant product, and6 can be obtained in high yield
when the reaction is carried out in a mixture of acetonitrile and
ether. We suggest the name “photo-Finkelstein reaction” for
this transformation; although its mechanism is very different
from that of its namesake, like the Finkelstein reaction14 it
accomplishes the replacement of other halogens by iodine
through the agency of iodide ion.

Treatment of either6 or 8 with mercury or silver in the
presence of ultrasound generated alkene2 very cleanly (Scheme
2). The Diels-Alder adduct9 was the sole product when the
reaction was carried out in the presence of furan.15 Nucleophilic
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attack on2 by methanol gave10 in high yield.16 When water
was present in the reaction mixture,gem-diol 12was obtained.17
Initial adduct11 ring opened under the reaction conditions with
loss of hydrogen fluoride, and the resulting cyclohexenone

hydrated to give12.18 Remarkably, ethyl vinyl ether trapped
alkene2 as the [2.2.2]propellane13.19 This represents a novel
route to the highly strained [2.2.2]propellanes, only one of which
(a carboxamido derivative20) has ever been isolated.21,22 Upon
standing at room temperature,13 slowly ring opens smoothly
to 1423 and 1524 (70:30), thus providing confirmation of its
structure.25

When no trapping agent is present in the mercury-induced
dehalogenation of6 or 8, a mercury complex of alkene2 is
formed; we have not yet succeeded in observing the free alkene.
Ultraviolet irradiation of diiodide6 may make that possible,
since trapping experiments have shown that this photolysis does
generate2. Future efforts will be directed toward characteriza-
tion of the alkene, further investigation of its reactivity, and
study of derived propellanes.
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